Hunt for the Quark Gluon Plasma

The Quark Gluon Plasma as an Unicorn. Experimentalists are the hunters, so.... "All theorists are..."

QCD at nonzero temperature

 $T \sim 0$: Hadronic resonance gas.

T → ∞: "perturbative" QCD Andersen, Leganger, Strickland, & Su, 1105.0514

Near the critical temperature? There must be an effective theory near T_c .

One example: matrix model of semi-QGP (near T_c) Simple, *closely* related to lattice simulations Moderate, not strong coupling (versus AdS/CFT...)

K. Kashiwa, S. Lin, V. Skokov & RDP, 1205.0545, 1206.1329, 1301.5344, 1301.7432 + 1306....

A. Dumitru, Y. Guo, Y. Hidaka, C. Korthals-Altes & RDP, 1205.0137, 1011.3820

RDP & Hidaka, 0803.0453, 0906.1751, 0907.4609, 0912.0940

RDP, ph/0608242, ph/0612191...

What the lattice tell us

Hidden scaling of the pressure near T_c

(Resummed) perturbation theory

Lattice: usual thermodynamics

"Pure" SU(3), no quarks. Peak in (e-3p)/T⁴, just above T_c. Borsanyi, Endrodi, Fodor, Katz, & Szabo, 1204.6184

Lattice: hidden scaling of the pressure

 $(e-3p)/T^4 \times (T^2/T_c^2)$ approximately constant near T_c :

Meisinger, Miller, & Ogilvie, ph/0108009; RDP, ph/0608242

$$p(T) \approx \# T^2(T^2 - cT_c^2), c = 1.00 \pm .01$$

Lattice: hidden scaling, redux

Lattice: hidden scaling, 3 to 6 colors

Hidden scaling holds for N = 3, 4, 6:

Lattice: hidden scaling, SU(N) in 2+1 dimensions

In 2+ 1 dimensions, hidden scaling again \sim T²: not a mass term, \sim m² T:

$$p(T) \approx \# T^2(T - c T_c), c \approx 1.$$

Moderate coupling, down to T_c

QCD coupling is *not* so big at T_c , $\alpha(2\pi T_c) \sim 0.3$ (runs like $\alpha(2\pi T)$)

HTL perturbation theory at NNLO: Andersen, Leganger, Strickland, & Su, 1105.0514

IONIZATION IN QED PLASMA

Neutral state → atoms, electric neutrality > atomic scales

Completely ionized plasma → plasma with freely moving electric charges

Partially ionized plasma \rightsquigarrow *partially* ionized plasma with atoms and electric charges

IONIZATION IN QCD PLASMA

Neutral state → confined phase, color neutrality > hadronic scale

Completely ionized plasma → perturbative QGP with freely moving charges

Partially ionized plasma → *partial* ionization of color: hadrons and color charges; semi-QGP, nontrivial holonomy

Z(N) symmetry and Polyakov Loops

$$L = SU(N)$$
 matrix, trace = Polyakov loop, l :

$$\ell = \frac{1}{N} \operatorname{tr} \mathbf{L}$$

< l > measures color ionization:

$$<\ell>\sim \mathrm{e}^{-F_{\mathrm{test}\,\mathrm{qk}}/T}$$

Confinement => no ionization of color,

$$=> < l> = 0, T < T_c$$
: Z(N) symmetric phase.

Color ionized above T_c, so

$$\langle l \rangle \neq 0, T \rangle T_c, Z(N)$$
 broken

Z(N) symmetry essential to deconfinement in SU(N)

Svetitsky and Yaffe '80:

SU(3) 1st order because of Z(3) symmetry:

Eff. Lag. of *loops* has cubic terms, $l^3 + (l^*)^3$.

Does *not* apply for N > 3.

So why is deconfinement 1st order for all $N \ge 3$?

Ordinary spins, s:

Polyakov loops from Lattice: pure Glue, no Quarks

Lattice: (renormalized) Polyakov loop. Strict order parameter

Three colors: Gupta, Hubner, Kaczmarek, 0711.2251.

Suggests wide transition region, like pressure, to $\sim 4 \text{ T}_c$.

Loop with, and without, quarks

Matrix Model: use *same* T_c with quarks. Loop turns on below T_c. Chiral transition is *not* tied to deconfinement. Like lattice results:

Z(3) symmetry and 't Hooft loops

Lattice, A. Kurkela, unpub.'d: 3 colors, loop *l* complex.

Distribution of loop shows Z(3) symmetry. Cannot ignore Z(3)!

Interface tension: box long in z.

Each end: distinct but degenerate vacua.

Interface forms, action ~ interface tension:

 $T > T_c$: order-order interface = 't Hooft loop:

Measures response to *magnetic* charge Korthals-Altes, Kovner, & Stephanov, hep-ph/9909516

 $Z \sim e^{-\sigma_{int}V_{tr}}$

Also: if transition 1st order, order-disorder interface tension at T_c.

Lattice: 't Hooft loops σ near T_c

Lattice: de Forcrand & Noth, lat/0510081. $\sigma \sim$ universal with N

Semi-classical σ: Giovanengelli & Korthals-Altes ph/0102022; /0212298; /0412322: GKA '04

Above 4 T_c, semi-class $\sigma \sim$ lattice. Below 4 T_c, lattice $\sigma <<$ semi-classical σ .

Interface tensions *small* at T_c for all N

Other models for the "s" QGP,

From $\sim T_c$ to \sim a few times T_c : "s" = strong? Strong coupling or...

Other models

Massive quasiparticles: Peshier, Kampfer, Pavlenko, Soff '96...Peshier & Cassing, ph/0502138 Bratkovskaya + ...1101.5793 Castorina, Miller, Satz 1101.1255 +

Mass decreases pressure, so adjust m(T) to fit p(T): three parameters.

$$p(T) = \# T^4 - m^2 T^2 + \dots$$

Polyakov loops: Fukushima ph/0310121...Hell, Kashiwa, Weise 1104.0572

Effective potential of Polyakov loops.

Potential has five parameters

1 variable, trace of (thermal) Wilson line, L

Matrix model for SU(N): N-1 eigenvalues of L.

$$V_{eff}(T) \sim m^2 \ell^* \ell + T \log f(\ell^* \ell)$$

$$m^2 = T^4 \sum_{i=0}^3 a_i (T_c/T)^i$$

AdS/CFT: Gubser, Nellore 0804.0434...Gursoy, Kiritsis, Mazzanti, Nitti, 0903.2859

Add potential for dilaton, φ , to fit pressure.

Only infinite N, two parameters

$$V(\phi) \sim \cosh(\gamma \phi) + b \phi^2$$

Quasiparticle Model

Castorina, Miller, Satz 1101.1255:

Since peak in $(e-3p)/T^4$ is near T_c , involved form for quasiparticle mass:

$$m_{\text{gluon}}(T) = a(t-1)^{-0.41} + bt$$
; $t = T/T_c$

Yet more models

Linear model of Wilson lines: Vuorinen & Yaffe, ph/0604100;

de Forcrand, Kurkela, & Vuorinen, 0801.1566; Zhang, Brauer, Kurkela, & Vuorinen, 1104.0572

$$V_{eff}(\mathbf{Z}) = m^2 \operatorname{tr} \mathbf{Z}^{\dagger} \mathbf{Z} + \kappa \left(\det \mathbf{Z} + c.c. \right) + \lambda \operatorname{tr} (\mathbf{Z}^{\dagger} \mathbf{Z})^2 + \dots$$

Narrow transition region: Braun, Gies, Pawlowski, 0708.2413;

Marhauser & Pawlowski, 0812.1444; Braun, Eichhorn, Gies, & Pawlowski, 1007.2619

Deriving effective theory from QCD:

Monopoles: Liao & Shuryak, ph/0611131, 0706.4465, 0804.0255, 0804.4890, 0810.4116, 1206.3989; Shuryak & Sulejmanpasic, 1201.5624

Dyons: Diakonov & Petrov, th/0404042, 0704.3181, 0906.2456, 1011.5636

Bions: Unsal, 0709.3269; Simic & Unsal 1010.5515; Poppitz, Schaefer, & Unsal 1205.0290

Matrix model: two colors

Just expand about *constant*, diagonal A₀

Necessary to include physics of Z(N) vacua

Deconfining transition 2nd order for two colors

A. Dumitru, Y. Guo, Y. Hidaka, C. Korthals-Altes & RDP, 1205.0137

Matrix model: SU(2)

Simplest possible approx.: model constant gauge transf.'s with constant $A_0 \sim \sigma_3$:

$$A_0^{cl} = \frac{\pi T}{g} \mathbf{q} \, \sigma_3 \; , \; \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\mathbf{L}(q) = \begin{pmatrix} e^{i\pi q} & 0 \\ 0 & e^{-i\pi q} \end{pmatrix}$$

Loop l real. $\mathbf{Z}(2)$ degenerate vacua $\mathbf{q} = 0$ and 1:

$$\ell = \cos(\pi q)$$

Point *half* way in between: $q = \frac{1}{2}$, l = 0. Confined vacuum, L_c ,

$$\mathbf{L}_c = \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right)$$

Classically, A_0^{cl} has zero action: *no* potential for q.

Potential for q, interface tension

Potential for q at one loop order: Gross, RDP, Yaffe, '81

Use V_{pert}(q) to compute 't Hooft loop:

Bhattacharya, Gocksch, Korthals-Altes, RDP, ph/9205231.

$$V_{tot}(q) = \frac{2\pi^2 T^2}{g^2} \left(\frac{dq}{dz}\right)^2 + V_{pert}(q) \qquad \Rightarrow \sigma = \frac{4\pi^2}{3\sqrt{6}} \frac{T^2}{\sqrt{g^2}}$$

Cartoons of deconfinement

Consider:

$$V_{eff} = q^2(1-q)^2 - a q(1-q), \ a \sim T_c^2/T^2$$

 \downarrow a = 0: complete QGP

↓ a = ¼: semi QGP

a = $\frac{1}{2}$: T_c=> Stable vacuum at q = $\frac{1}{2}$ Transition *second* order

Matrix model: N = 3

At infinite N, constant A₀ is the "master field" for the semi-QGP

Matrix model: implicitly, expansion in large N

Effective Lagrangian? Only from the lattice

N.B.: matrix model gives a first order transition for all $N \ge 3$

A. Dumitru, Y. Guo, Y. Hidaka, C. Korthals-Altes & RDP, 1205.0137

Confining vacuum in SU(3)

Consider path along $\lambda_3 = \text{diag}(1,-1,0)$:

$$\mathbf{L} = e^{2\pi i q_3 \lambda_3/3}$$

When $q_3 = 1$:

$$\mathbf{L}_c = \begin{pmatrix} e^{2\pi i/3} & 0 & 0\\ 0 & e^{-2\pi i/3} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Elements of $e^{2\pi i/3}$ L_c same as those of L_c. Hence

$$\operatorname{tr} \mathbf{L}_c = \operatorname{tr} \mathbf{L}_c^2 = 0$$

L_c is the confining vacuum, **X**:

"center" of space in λ_3 and $\lambda_8 = \text{diag}(1,1,-2)$

Move from deconfined vacuum, $\mathbf{L} = \mathbf{1}$, to the confined vacua, \mathbf{L}_c , along red line:

Matrix model: details

Simplest ansatz: constant, diagonal A₀:

$$A_0^{ij} = \frac{2\pi T}{g} q_i \, \delta^{ij} \,, \, i, j = 1 \dots N$$

At 1-loop order, perturbative potential

$$V_{pert}(q) = \frac{2\pi^2}{3} T^4 \left(-\frac{4}{15} (N^2 - 1) + \sum_{i,j} q_{ij}^2 (1 - q_{ij})^2 \right) , \ q_{ij} = |q_i - q_j|$$

Assume non-perturbative potential $\sim T^2 T_c^2$:

$$V_{non}(q) = \frac{2\pi^2}{3} T^2 T_c^2 \left(-\frac{c_1}{5} \sum_{i,j} q_{ij} (1 - q_{ij}) - c_2 \sum_{i,j} q_{ij}^2 (1 - q_{ij})^2 + \frac{4}{15} c_3 \right) + BT_c^4$$

For SU(N), $\Sigma_{j=1...N}$ $q_j = 0$. Hence N-1 independent q_j 's, # diagonal generators. Two conditions: transition occurs at T_c , and pressure = 0 at T_c . Can do better!

Matrix model: parameters from the lattice

Choose 2 free parameters to fit: latent heat at T_c , $(e-3p)/T^4$ at large T

$$c_1 = .88, c_2 = .55, c_3 = .95$$

Reasonable value for bag constant B:

 $T_c = 270 \text{ MeV}, B \sim (262 \text{ MeV})^4$

Matrix model: 't Hooft loop vs lattice

Matrix model works well:

Lattice: de Forcrand, D'Elia, & Pepe, lat/0007034; de Forcrand & Noth lat/0506005

Matrix model: Polyakov loop vs lattice

Renormalized Polyakov loop from lattice nothing like Matrix Model

Model: transition region narrow, to ~ 1.2 T_c. Lattice: loop wide, to ~ 4.0 T_c. Can alter parameters to fit Polyakov loop; do not fit latent heat with 2 parameters

Heavy quarks in the matrix model

Position of the deconfining critical endpoint

Kashiwa, RDP, & Skokov 1205.0545

Adding heavy quarks

Quarks add to the perturbative q-potential,

$$V_{pert}^{qk}(q) = -\operatorname{tr} \log(\mathcal{D}^{cl} + m) \sim -\frac{\sqrt{2}}{\pi^{3/2}} T^{5/2} m^{3/2} e^{-m/T} \operatorname{Re} \operatorname{tr} \mathbf{L} + \dots$$

Plus terms $\sim e^{-2m/T}$ Re tr L^2 , etc. Quarks act like background Z(3) field. Heavy quarks wash out deconfinement at Deconfining Critical Endpoint, DCE.

For the DCE, first term works to $\sim 1\%$ for all quantities.

Add $V^{qk}_{pert}(q)$ to the gluon potential, and change nothing else, same T_c .

Most straightforward approach. Naturally, $T_{DCE} < T_c$.

N.B.: Quarks generate v.e.v for $\langle loop \rangle$ below T_c , and so become sensitive to details of pressure in the confined phase. Have to modify the potential by hand to avoid unphysical behavior (negative pressure)

Deconfining critical endpoint in matrix model

Matrix model: $T_{DCE} \sim 0.991 T_c \quad m_{DCE} \sim 2.4 \text{ GeV heavy}$

Lattice: $T_{DCE} \sim 0.998 T_c \quad m_{DCE} \sim 2.2 \text{ GeV}$

hopping parameter expansion: Fromm, Langelage, Lottini, Philipsen, 1111.4953

Polyakov loop models: $T_{DCE} \sim 0.90 T_c$ $m_{DCE} \sim 1 \text{ GeV} << \text{ lattice result}$

Matrix model: prediction for interaction measure

For three flavors, matrix model gives two bumps in (e-3p)/ T^4 One just above T_{DCE} from gluons, another at ~ 4 T_{DCE} , from quarks.

Due to heavy m_{DCE} . Does not happen for models with light m_{DCE}

Matrix model for $SU(\infty)$

Novel phase transition, Gross-Witten-Wadia

At infinite N, transition has aspects of both first and second order

E.g.: all interface tensions *vanish* at T_c

RDP & Skokov, 1206.1329; Lin, RDP, & Skokov, 1301.7432

Matrix model at infinite N

Use eigenvalue density, $\varrho(q)$: $A^{0}_{i} \sim q_{i}$, i = 1...N, discrete sum $\Sigma_{i} = \int dq \, \varrho(q)$

$$V_n(q) = \int dq \int dq' \ \rho(q) \ \rho(q') \ |q - q'|^n (1 - |q - q'|)^n$$

Matrix model: V₁ and V₂. Take derivatives of equation of motion, at T_c solution

$$\rho(q) = 1 + \cos(2\pi q)$$
, $q: -1/2 \to 1/2$

Solution similar when $T \neq T_c$, $\varrho(q) = 1 + b \cos(d q)$.

Consider SU(N) on femtosphere: spatial sphere so small that coupling is small Sundberg, th/9908001; Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk, th/0310285; Dumitru, Lenaghan, RDP, ph/0410294

Effective theory for the spatially static model includes Vandermonde determinant

$$\# |\int dq \, \rho(q) \, e^{2\pi i \, q}|^2 + \int dq \int dq' \, \rho(q) \, \rho(q') \log |e^{2\pi i q} - e^{2\pi i q'}|$$

At T_c , eigenvalue density for the two matrix models are *identical*: not for $T \neq T_c$.

Gross-Witten-Wadia transition at infinite N

Solution at N= ∞ : "critical first order" transition - both first *and* second order Latent heat *non*zero \sim N². *And* specific heat diverges, $C_v \sim 1/(T-T_c)^{3/5}$

Potential function of all tr L^n , n = 1, 2... But at T_{c^+} , only first loop is nonzero:

$$\ell = \frac{1}{N} \text{ tr } \mathbf{L}$$

$$\ell(T_c^-) = 0$$

$$\ell(T_c^+) = \frac{1}{2}$$

But V_{eff} flat between them!

$$\operatorname{tr} \mathbf{L}^{n} (T_{c}) = 0 , n \geq 2$$

Remnants of GWW at finite N

Solve matrix model numerically at finite N. Find two minima, at 0 and $\sim 1/2$. Standard first order transition, with barrier & so interface tension, between them Barrier disappears at infinite N: so interface tensions *vanish* at infinite N Below: potential $/(N^2-1)$, versus tr L.

GWW at finite N: interface tensions small at T_c

Consider maximum of previous figure, versus number of colors: increases by ~ 2 from N = 3 to 5, then *decreases* monotonically as N increases Perhaps: non-monotonic behavior of order-disorder interface tension with N?

Lattice: order-disorder interface tension α^{od} at T_c : Lucini, Teper, Wegner, lat/0502003

$$\frac{\alpha^{od}}{N^2 T_c^3} = .014 - \frac{.10}{N^2}$$

Coefficients *small*, χ^2 *large*, ~ 2.8 . Sign of non-monotonic α^{od}/N^2 ?

N.B.: 't Hooft loops small near T_c

GWW at finite N: specific heat

See increase in specific heat only very near T_c , ~ .1 %, for very large N > 40

Roberge-Weiss transitions

Value of an imaginary quark chemical potential, φ:

How to measure the 't Hooft loop with dynamical quarks

Phase diagram in the T - ϕ plane for heavy quarks

Kashiwa & RDP, 1301.5344

Roberge-Weiss symmetry

Quarks with *imaginary* chemical potential, $\mu = 2 \pi i \phi T$.

Under global Z(N) rotation:

$$q(\vec{x}, 1/T) = e^{2\pi i(\phi + 1/N)} q(\vec{x}, 0)$$

With quarks, and without ϕ , no Z(N) symmetry. With ϕ , Roberge-Weiss symmetry:

$$\phi \to \phi + \frac{1}{N}$$

Periodicity occurs because of a phase transition, of first order, at $\phi_{RW} = 1/(2N)$.

Jump from $A_0 = 0$, just left of ϕ_{RW} , to

$$A_0 = \frac{2\pi T}{q} \frac{1}{N} \operatorname{diag}(1...1, -(N-1))$$

just right of φ_{RW}.

Boundary conditions *identical* to Z(N) interface. Interface tension for 1st order transition at ϕ_{RW} is the 't Hooft loop - *with* dynamical quarks.

Phase diagram for RW transitions: high mass

Above only for high T. Near T_c , use matrix model for heavy quarks Consider $m = m_{DCE}$, at Deconfining Critical Endpoint

For high T, line of 1st order RW transitions at $\phi_{RW} = 1/6$: interface tension = 't Hooft loop

 ϕ = 0: 2nd order trans. in T, DCE

 $\phi_{RW} > \phi > 0$: Two lines of 1st order trans.'s

Mix deconfinement & RW

Jump in A_0 not Z(3) transform, so

interface tension not 't Hooft loop

Phase diagram for RW transitions: intermediate mass

 $m_{dce} > m > m_{tri}$: lines of 1st order transitions shrink in ϕ .

Again, interface tension = 't Hooft loop only for $\phi_{RW} = 1/6$

Phase diagram for RW transitions: low mass

At $m = m_{tri}$, 1st order lines for $\phi \neq \phi_{RW}$ merge into ϕ_{RW} , giving *tri*-critical point For $m < m_{tri}$, line of RW transitions ends in an ordinary critical endpoint

Thermodynamics of Roberge-Weiss transition

Use matrix model to compute at m= m_{dce} , $\phi = \phi_{RW} = 1/6$.

Pressure even in ϕ , so doesn't change

Quark number density at RW transition

Use matrix model to compute at m_{dce} , $\phi = \phi_{RW} = 1/6$.

(Imaginary) part of quark number density odd in ϕ , so flips sign

Interaction measure at RW transition

Use matrix model to compute at m_{dce} , $\phi = \phi_{RW} = 1/6$.

Energy density jumps at transition. Interaction measure *negative* to right of ϕ_{RW} Unphysical, occurs as chemical potential ~ T is imaginary

Future work

Straightforward to add light quarks with chiral effective lagrangian.

In the matrix model, $T_{deconfinement} \neq T_{chiral}$: T_{chiral} new parameter

Standard kinetic theory:

To obtain small shear viscosity η , as $\eta \sim 1/g^4$, coupling must be large Then for radiative energy loss, qhat $\sim g^2$ is large Majumder, Muller, & Wang, ph/0703082; Liao & Shuryak, 0810.4116...

Matrix model:
$$\eta$$
 small when the loop is (Y. Hidaka & RDP) $\sigma \sim loop^2$, but $\varrho = density \sim loop^2$ T³: $\eta \sim \frac{\rho^2}{\sigma} \sim \ell^2$

Collisional energy loss $\sim \varrho_{quark} \sim loop$, small near T_c .

Presently computing radiative energy loss, production of photons, dileptons...

Experiment? Both RHIC & LHC are mainly (all?) in the s-QGP.